HFMOEA: a hybrid framework for multi-objective feature selection

نویسندگان

چکیده

Abstract In this data-driven era, where a large number of attributes are often publicly available, redundancy becomes major problem, which leads to storage and computational resource requirement. Feature selection is method for reducing the dimensionality data by removing such redundant or misleading attributes. This optimal feature subsets that can be used further computation like classification data. Learning algorithms, when fitted on reduced dimensions, perform more efficiently storing also easier. However, there exists trade-off between features selected accuracy obtained requirement different tasks may vary. Thus, in paper, hybrid filter multi-objective evolutionary algorithm (HFMOEA) has been proposed based nondominated sorting genetic (NSGA-II) coupled with filter-based ranking methods population initialization obtain an solution set problem. The two competing objectives minimization maximization accuracy. help faster convergence NSGA-II PF. HFMOEA evaluated 18 UCI datasets 2 deep sets (features extracted from image using learning models) justify viability approach respect state-of-the-art. relevant codes available at https://github.com/Rohit-Kundu/HFMOEA.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Evolutionary Multi-Objective Feature Selection

Feature selection is one of the most pervasive problems in pattern recognition. It can be posed as a multiobjective optimisation problem, since, in the simplest case, it involves feature subset cardinality minimisation and performance maximisation. In many problem domains, such as in medical or engineering diagnosis, performance can more appropriately be assessed by ROC analysis, in terms of cl...

متن کامل

A Fuzzy Approach For Multi-Objective Supplier Selection

Assessment and selection of suppliers are two most important tasks in the purchasing part in supply chain management. Supplier selection can be considered to be a single or multi-objective problem. From another point of view, it can be a single or multi-sourcing problem. In this paper, an integrated AHP and Fuzzy TOPSIS model is proposed to solve the supplier selection problem. This model makes...

متن کامل

A New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)

Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...

متن کامل

A fuzzy random multi-objective approach for portfolio selection

In this paper, the portfolio selection problem is considered, where fuzziness and randomness appear simultaneously in optimization process. Since return and dividend play an important role in such problems, a new model is developed in a mixed environment by incorporating fuzzy random variable as multi-objective nonlinear model. Then a novel interactive approach is proposed to determine the pref...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Design and Engineering

سال: 2022

ISSN: ['2288-5048', '2288-4300']

DOI: https://doi.org/10.1093/jcde/qwac040